Multiple solution to a Neumann problem with p(x)-Laplacian

dc.contributor.author Dina Bourafa
dc.date.accessioned 2025-11-10T13:08:35Z
dc.date.available 2025-11-10T13:08:35Z
dc.date.issued 2024
dc.description.abstract Dans ce memore, nous considerons un probleme aux limites pour l'operateur de type p(x)-Laplacien sous des conditions aux limites non lineaires de Neumann. L'objectif de ce travail est demontrer l'existence d'un minimum global de la fonc tionnelle l'energie d'Euler-Lagrange, et un minimum locale. En appliquant le principe variationnelle d'Ekland et theoreme du Col. In this paper we consider a boundary value problem for the p(x) {Laplacien operator under nonlinear Neuman type boundray condition . We establish the existence of a global minimum for the Euler-Lagrange energy. A second weak solution is obtained by the mountain pass theorem. في هذه الورقة ندرس مسألة القيم الحدية لمؤثر لابلاس p(x) تحت شرط حدّي من نوع نيومان غير الخطي. نقوم بإثبات وجود الحد الأدنى الكلي لطاقة أويلر-لاغرانج. يتم الحصول على حل ضعيف ثانٍ باستخدام نظرية مرور الجبل.
dc.identifier.uri http://depotucbet.univ-eltarf.dz:4000/handle/123456789/2253
dc.language.iso fr
dc.publisher université chadli ben djedid eltarf
dc.title Multiple solution to a Neumann problem with p(x)-Laplacian
dc.type Thesis
dspace.entity.type
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
memoire finale.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections