Study of differential operator in Sobolev spaces.
Study of differential operator in Sobolev spaces.
| dc.contributor.author | Khiari Nesrien | |
| dc.date.accessioned | 2025-11-13T10:02:23Z | |
| dc.date.available | 2025-11-13T10:02:23Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | In This work, we study The p—Laplacian problem of The forme : —Apu + m(x) |u|p—2 u = ƒ (x, u) in RN . We establish the existence and uniqueness of a weak solution of the problem in Rn, which involves the p—laplacian through the Browder Theorem. Key Words : p—Laplacian operator, weak solution, Lebesgue-Sobolev space, Brawder Theo- rem. Dans ce travail, nous étudions un problème du type p—Laplacian de la forme : —Apu + m(x) |u|p—2 u = ƒ (x, u) dans RN . (1) Nous montrons l'existence et l'unicité d'une solution faible de (1) dans Rn, en utilisant le théorème de Browder. Mots clés : l'opérateur p—Laplacien, solution faible, espace de Lebesgue-Sobolev, théorème de Browder. | |
| dc.identifier.uri | http://depotucbet.univ-eltarf.dz:4000/handle/123456789/2384 | |
| dc.language.iso | en | |
| dc.publisher | université chadli ben djedid eltarf | |
| dc.title | Study of differential operator in Sobolev spaces. | |
| dc.type | Thesis | |
| dspace.entity.type |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Mémoire de master Nesrine corrigé+2 (1).pdf
- Size:
- 1.69 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: