Study of differential operator in Sobolev spaces.

dc.contributor.author Khiari Nesrien
dc.date.accessioned 2025-11-13T10:02:23Z
dc.date.available 2025-11-13T10:02:23Z
dc.date.issued 2025
dc.description.abstract In This work, we study The p—Laplacian problem of The forme : —Apu + m(x) |u|p—2 u = ƒ (x, u) in RN . We establish the existence and uniqueness of a weak solution of the problem in Rn, which involves the p—laplacian through the Browder Theorem. Key Words : p—Laplacian operator, weak solution, Lebesgue-Sobolev space, Brawder Theo- rem. Dans ce travail, nous étudions un problème du type p—Laplacian de la forme : —Apu + m(x) |u|p—2 u = ƒ (x, u) dans RN . (1) Nous montrons l'existence et l'unicité d'une solution faible de (1) dans Rn, en utilisant le théorème de Browder. Mots clés : l'opérateur p—Laplacien, solution faible, espace de Lebesgue-Sobolev, théorème de Browder.
dc.identifier.uri http://depotucbet.univ-eltarf.dz:4000/handle/123456789/2384
dc.language.iso en
dc.publisher université chadli ben djedid eltarf
dc.title Study of differential operator in Sobolev spaces.
dc.type Thesis
dspace.entity.type
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Mémoire de master Nesrine corrigé+2 (1).pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections